VERTICAL DISTRIBUTION OF THE SUBSTANCE IN A
BINARY MIXTURE NEAR THE CRITICAL
EVAPORATION STATE

N. P. Krupskii, A. V. Chalyi, UDC 536.423.1
and Yu. I. Shimanskii

Based on the thermodynamic theory of critical states, the content and the density distribution
in a binary mixture along the height of the system are analyzed, assuming isothermal con-
ditions with positive temperature gradients beyond the critical evaporation point,

Near the critical state of a binary liquid—vapor system one observes a considerable gravitational ef-
fect. Under the influence of the gravity field there occurs in an isothermal binary mixture a noticeable re-
distribution of content and density along the height of the system 1, 2, 3]. The present phenomenological
theories of the gravitational effect deal with the distribution of a substance along the height of a system at
the critical temperature [4, 5, 6]. Since an experimental study is conducted at temperatures not exactly
equal to the critical temperature, as a rule, it becomes necessary to consider the content and the density
of an isothermal binary mixture along the height of the system at temperatures which differ from the criti-
cal temperature by some small increment T—TCY. We will consider here only the case where T > TCT,

We use the equation of balance for a binary system in the gravity field, which has been derived by dif-
ferent authors in different ways [6, 7]:
Grxdx = — [M2 M, —P (f’_‘.’.> 2,dZ. @)
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Equation (1) can be easily transformed with the aid of the relation
_ M= X) £ MX

v
P
into an expression more convenient in certain cases:
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The critical state of a binary xﬁixture is characterized by a vanishing of both the second and the third ’
derivative of the thermodynamic potential with respect to the molar fraction, while the stability condition
for this state with regard to diffusion requires the respective fourth derivative to be positive [8], i.e.,

G =0, Gixx=0, Gixxx>0. 3

Assuming the thermodynamic functions in Eq. (2) to be analytic and resolving them into series with
respect to small deviations in the independent variables p, T, X from their critical values, we obtain
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Fig. 1. Possible locations of the critical point K on the
tip portion of the p—T coexistence diagram for a binary
mixture; py and Ty are the maximum pressure and the
maximum temperafure respectively ai which a two-
phase equilibrium is possible in a solution with some
given concentration. The spinodal curve for such a
solution is indicated by a dashed line,

In order to examine the signs of the coefficients in the first three terms of series (4), which deter-
mine the behavior of a solution in the immediate vicinity of the critical state, we will use the p~T diagram
for a binary mixture, There aré three possible locations of the critical point on this diagram (Fig. 1).

In the first case (Fig. 1a) the critical point lies between the maximum-pressure point Pyr and the max-
imum-temperature point Tyr on the binodal curve, Here a temperature rise at the critical pressure and
composition or a pressure rise at the critical temperature and composition (such processes are indicated
on the diagram by arrows) shiffs the system from the eritical state into the region of single-phase stable
states where Gxx > 0. This means, as can be seen in expression (4), that both derivatives G$E T and

¢L.are positive when the critical point is located in this range. In the second case (Fig. 1b) the critical
poinf K lies to the left of point py;. Here a temperature rise at the critical pressure and composition shifts
the system from the critical state into the region of unstable states (inside the spinodal curve) defined where
Gxx < 0. Consequently, the derivative G%{T < 0 while the derivative Gg&p remains positive when the
critical point is located in this range.

In the third case (Fig. 1c) the critical point K lies below point Tp;. Here G)C&p < 0 while GZ > 0.

To study the behavior of binary mixtures near the critical liquid—vapor state, one usually pours such
a mixture into a hermetic chamber so that the average density and composition are close to critical, i.e.,
that P ~P°F and X ~ X®Y. Then the meniscus separating the liquid from the gaseous phase will disappear
when the critical temperature is reached inside the chamber, At temperatures somewhat above the critical
point one should expect the two conditions X = X°T and P = P°T to be simultaneously satisfied at the level
where the meniscus vanishes,

At this level the temperature-dependent change in pressure is (8p/ aT)gfI:X(T—Tcr). The departure
of the pressure from its critical value at any height may, taking into account the hydrostatic pressure com-
ponent, be expressed as follows:

p—p = (?Bj (T — Te1) — peig, (Z — Z2°, 6)
dT V.X
where 7-7% is the height above the level where X = x°" and P= Pcr‘ Inserting (6) into expression (4),
we obtain
. \ 1 !
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The derivative (6p/9T)y x is positive. In the first case (Fig. la), when the critical point lies be~
tween py and Ty, both terms in the coefficient of (T —TCT) in (7) are positive. In the second and in the
third case (p—T diagrams in Fig. 1b, c¢) these terms have opposite signs. We will prove that the expres-
sion by which (T —TCT) in (7) is multiplied remains always positive, regardless of the signs of its component
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X, Fig. 2, V-Xand V-T sections of
) the T—V-X coexistence surface of

. . k .| a binary mixture: a) for a solution
x| the TCY = £(X) curve of which has a

minimum ; b) for a solution the TCF
= f(X) curve of which does not have

7
‘ .
_dlb‘v ]_b_v a minimum T°T,

terms, i.e., regardless of the location of the critical point on the binodal surface of a binary mixture. For
this purpose, using the van der Waals' relation [7]

(d_P ')‘“ _ _ Gér (8)
dT ) x bin G%(p
we transform the coefficient of (T —TCY) into the following expression:
/a_p_‘.)cr _ a_g‘)cr . ((_jﬂ)cr :\GCI‘ ] (8')
Giar -+ G YoT v LOT, v.X dT [x bin ‘ xxe ‘
On the other hand, we have
er 'dp \Cr [ dy\cr
(dpj (‘3_’1 +(J_’_‘) (__) _ (9)
dTJxbin \0T)vx \9 /rx \dT/x bin
Inserting (9) into (8) yields
cr cr 6p cr ap )CI (dV \ T cr
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The first factor on the right-hand side of (10) is always positive. The other two factors, although they
change signs depending on the location of the critical point, have always both the same sign. This becomes
evident, if one considers the V-X and the V—-T sections through the same critical point on the binodal sur-
face of a binary mixture (Fig. 2). The situation in Fig. 2arepresents the most general case, namely an azeo-
tropic mixture the binodal surface of which, in V, T, X coordinates, is saddle-shaped. For such mixtures,
within the range of concentrations between that corresponding to the termination of the azeotropic curve on
the critical curve and that corresponding to the minimum critical temperature, the cr1t10a1 point K; is lo-

" cated on the upper half of the V—X section of the binodal surface and the derivative GXXp is negative [7].

At the same time, pomt Ki lies also on the right-hand half of the V—~T section of the binodal surface, i.e.,
the derivative (dV /dT)X bin 18 also negative. In the other cases (point K, in Figs. 2a and point K in Fig.

2b) the crltlcal pomt is loeated on the lower half of the V—X section of the binodal surface with both positive
derivatives GXXp (7} and (dV/ dT)Xr pin. Thus, the coefficient of (T - ~TCT) in (7) is always positive.

Disregarding in (7) the last term, which is of a high-order of smallness, and inserting (7) as well as
(5) into (2) will yield, after a change to the dimensionless variables:
X - Xer T Tcr , p— pct vV —Veor
e T T e T e
p_.pce P g, (Z— Z%) G '

p= per h= pcr , 8= ;aj‘—/a.—,

a linear nonhomogeneous differential equation which relates a change in the composition of a binary mixture
to the height in the system — at small temperature excursions from the critical point:
dh D, A B CF —AL CE —BL

—"‘_h — ¢ = x? tx_JT’ x3:07
s ottt t T o (11)

where the following symbols are used for dimensionless coefficients:

‘op' \er ger ( dp \cr
A= q.ger (27 , B=Zxxxx = O =" ' = ‘Y
gxxt T gxxp ( ot ) 2 \ax )p»,t gxxp
g PN =2 (v 2]
E = —6——— ’ xxxl+ xxxﬂ oF vx ! ox \ Ox }P’.t
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The solution to Eq. (11) with the condition x=0ath = 0 is

ho BBl oy OB SCEB] () 2
CcD Dlc cD D
CF—AL Cc A CF— AL 2BC 6(CE—BL)C ‘D
oy AR . R | i A t4 1— Zxi. (12)
T D[(C D ) T T D H exp(._c‘x)]
In the physically meaningful extreme case |(D/C)x| « 1 the solution becomes
B A(D A(D—1L)+CF CF ¢ E BL BD
Bt 2oy L E 2 - 13
3C sl 202 L4C 4C* 12Cz> * as)

The solution to this equation, x(h, t), is found by successive approximations and, as a result, we obtain a
formula for the departure of the composition from the critical one:

2 [A(D— L) + CF) tx + [B(D— L) + CE] x}

X = X, — 14
£ iC (A + Bx)) ’ a8

with the zeroth approximation x,(h, t) representing the solution to the cubic equation k
% X34 Aty + Ch = 0. ' | (15)

The second term in (14) represents a small correction found from (13) in the next approximation.

Solving (15) for the extreme case [(A /B)t]® > [(3C /2B)h]?, which corresponds to small changes along
the height of the system at relatively large temperature excursions, and inserting the found solution into
(14) yields

Ch CF\ h : 16
B f)y=—-"{14+|(D—L -~~—], (16)
9 At [ ) ( 3 ) 24t

which means that in the immediate vicinity of level h = 0 the composition seems to vary linearly with height.

At small temperature excursions and at relatively small deviations along the height, which corre-
sponds to the inequality [(A/B)t]® « [(3C/2B)h}, the composition varies with height according to the rela-
tion:

3Ch |1 At B(D—L)+CE (3Ch\* [, AD—L)+CF _ ¢
XW”?—FE)[““;@@%ﬂ—"“ﬂf——ﬂy)[IBm*m+m Bl 0
i ) \ B

where the first term represents the solution to the zeroth approximation (15) and the last term represents
a small correction,

It is to be noted that for mixtures having a minimum on the T¢¥ = £(X) curve the quantity C = (9p
/ ax)c, |y may be either positive or negative [7], This means, according to (16) and (17), that the concentra-
tion of the mixture can either decrease or increase, depending on the location of the x = 0 point on the cri-
tical curve for the given mixture,

Inserting solution (17) into the original inequality |([D/C)x| « 1 and considering that the change in com-
position as a function of temperature is determined essentially by the first term in (17), we arrive at the
criterion

- L (18)

[ 3 IDP

for the range of heights within which the composition of a mixture as a function of the height is described by
Eq. (13) and by the respective solutions (16) and (17) to this equation,

»

Reverting to dimensional quantities and taking note of the relation V = [(M; —M;)X~M,]/P, we can now
transform the right-hand side of inequality (18) into

oV e
Gxxxx [lwz—Ml—Pcr (a“)z) r]
L I

il

(19)
6p°F (P
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Expression (19) represents a large quantity, since the derivative 82V /5X? is small. The situation
may change when the critical phase is diluted, or near the azeotropic point on the critical curve. In both
cases the quantities (9V/ 8X) ‘r and (8%v/ axz)‘”fT increase infinitely [7].

It can be proved, by differentiating the identity (8G /8X)p,T (0¥/0X)y, T with respect to the com-
position X (where ¥ denotes the free energy per mole of a solution), that during dilution as well as near the
azeotropic point GZ&x increases as (8V/aX)L.

During dilution (8V/8X)°T ~ (X°T)~1 [9]. Differentiating the thermodynamw equation 8V /06X = —(9p
/oX)(op/oV)™1 with respect to the composition, with the behavior of (dp/ BX)V T at the limit taken into ac-
count, will yield the following relation:

&V v .
ax: (ax ) X"

Inserting these values into (19), we will then find that during dilution of the critical phase the range of

heights defined by (18) becomes finite,

The situation is different at the point where the azeotropic curve terminates into the critical curve
for a solution. At this point, approximately, 82V/0X? ~ (8V /8X)? [7], i.e., expression (19) tends toward
zero as (0V/8X)~ does, This means that in solutions having a composition close to that of an azeotropic
mixture the composition varies along the height according to relation (17) only within a narrow range of
heights, this range tending toward zero as the special point on the critical curve for a given solution is ap-
proached,

In order to find the density distribution over the height of an isothermal binary mixture near the x = 0,
p = 0 level at small positive temperature excursions, we will use the resolution:

o= (g%)cr s ('g%)cr (‘Q&‘-)cr ‘ (20)

ot
During critical evaporation of binary mixtures the derivative (9p/ dp' )t x is generally a finite quan-
tity. Using the obvious relation (9p /8tpt,x =—(9p/ 9p')¢, x(8p' /0t)p xand replacmg p' in (20) with ex-
pression (6), after a prior conversion to dimensionless form, we obtain after some simplications:
ap cr \CI.‘
— 21
p Lax ) ( ,)t x ( )
The density distribution in a binary mixture within the range of heights defined by (18) can be found by in-
serting solutions {16) and (17) into (21).

Thus, in binary mixtures at near-critical states there exists a distinct content and density distribu-
tion over the height of the system. The character of content and density deviations from critical appears
to be the same as the character of density deviations in single-component systems. At small distances
above level h = 0 and when the temperature excursions from the critical point dre relatively large, the com-
position and the density vary as linear functions of the height. At considerable heights and when the tem-
perature excursions are small, the composition and the density of binary mixtures vary as cubic functions
of the height.

The results obtained so far are useful in analyzing another interesting problem. It is well known that
the vertical distribution of density in a solution at constant temperature can be expressed as.[6]:

dP Pg,
= : 22
dp T.grav

where the derivative (dp/dP)T, grav is taken along the gravitational curve,

One of the authors here has stated earlier that (dp/dP)T, grav along the critical curve for a binary
mixture is not equal to zeéro [6]. It can be proved rigorously that this derivative will tend toward zero as
the critical state of the mixture is approached. Indeed, it follows from the isothermal conditions that

dpP _ ap‘) dX (ap) dp 23)
dZ aX, p.T dz ap T.X dZ
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Comparing (23) with (22) and using expression {2), we obtain

it
I . J.X_i+(‘ie) P.
(d_p) Gxx 0p /1.x
dP ) r grav

On the critical curve for a mixture Gg& = 0 and the devivatives (8P / 8X)§fT, {ap/ ap)%rx are gen-
erally finite, from which we have that (dp /dP)%I; grav = 0- We observe here an analogy to sing’le—component
systems. In the latter case the gravitational curve coincides with the isotherm and, therefore, the partial
derivative (9p/9P)T, which vanishes at the critical point, becomes also the derivative taken along the gra-
vitational curve,

NOTATION
G is the thermodynamic potential per mole of mixture;
X is the molar fraction of the second component in a mixture;
GXx is the second derivative of the thermodynamic potential with respect to the molar frac-
or ~ tion of the second component;
GXX is the value of this derivative at the critical point of a mixture;
My, My are the molecular weight of the first and the second component, respectively;
P is the density;

A% is the molar volume;

p is the pressure;

T is the absolute temperature;

A is the acceleration due to gravity;
Z is the vertical coordinate;

{dp/dT)X,bin is the derivative of pressure with respect to temperature, taken along the binodal curve;

X, t, p'yV,p are the relative deviations of the composition, temperature, pressure, molar volume,
and density from their respective critical values;

h is the dimensionless height above the critical density and composition level;

g is the dimensionless thermodynamic potential per mole;

@dp/dP)T, grav is the derivative of pressure with respect to density, taken along the gravitational curve.
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